skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Li, Wenzhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Li, Wenzhong (Ed.)
    In recent years, a series of researches have revealed that the Deep Neural Network (DNN) is vulnerable to adversarial attack, and a number of attack methods have been proposed. Among those methods, an extremely sly type of attack named the one-pixel attack can mislead DNNs to misclassify an image via only modifying one pixel of the image, leading to severe security threats to DNN-based information systems. Currently, no method can really detect the one-pixel attack, for which the blank will be filled by this paper. This paper proposes two detection methods, including trigger detection and candidate detection. The trigger detection method analyzes the vulnerability of DNN models and gives the most suspected pixel that is modified by the one-pixel attack. The candidate detection method identifies a set of most suspected pixels using a differential evolution-based heuristic algorithm. The real-data experiments show that the trigger detection method has a detection success rate of 9.1%, and the candidate detection method achieves a detection success rate of 30.1%, which can validate the effectiveness of our methods. 
    more » « less